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Bansonic flows in the nei~~~h~ of a comer point on a profile are ~v~~t~ in a class of self-simik 
solutions of Karma& equation. The corner point is formed by the intersection of two smooth curves, the 
tangents to which make a convex angle. J%e generatrix, which lies in the subsonic part of the flow is assumed 
to be curvilinear and to vary according to a power law. Values of the se&irnilarity index are. found for which 
transonic flows are possible either with a free streamline or with a rarefaction wave. 

Tmsonic flows are investigated in the nei~~~h~d of a corner point on a profile which is formed 
by the intersection of two smooth curves A0 and OB, the tangents to which form a convex angle (Figs 
1 and 2). It is assumed that the subsonic flow of an ideal gas which is incident along A0 is vortex-free 
and iso-energetic and that a sonic line emerges from the point 0. In this case all the characteristic 
features of a flow in a certain neighbourhood of the point 0 are described by Karman’s equation which 
admits of a class of self-similar solutions [1, Z]. 

The problem of the transonic flow past a comer point on a profile with a rarefaction wave was f%st 
formulated by Vaglio-Laurin when studying the flow past a blunt body with a detached shock wave. Its 
solution in the case of a rectilinear generatrixA0 was found using numerical methods [3] in the class 
of self-similar functions with self-similarity index n = ?4. The Vaglio-Laurin solution was obtained in 
a closed parametric form in -f4]. If the generatrixA0 is rectilinear and n = %, then, as shown in [S], a 
self-similar solution can be obtained which describes a flow with a free stream-line. The velocity in the 
latter is equal to the velocity of sound. 

When n = 74 and n = %, account is taken of the curvature of A0 using the following approxi- 
mations [3,6-g]. If the curvature ofA is constant, it is taken account of in the Vaglio-Laurin solution 
using the second approximation, which is responsible for the non-linearity of I&t-man’s equation. 
However, when n = A, a further solution with a rarefaction wave, which is analogous to a Vaglio- 
Laurin solution, has been found [9]. This solution gives the flow past a comer point with a genera&ix 
A0 which has a constant curvature. 

Self-similar solutions are found below which describe locally transonic flows in the neighbourhood 
of a comer point on a profile with a curvilinear generatrix A0 which varies according to a power law. 
It is shown that, apart from the solutions when n =%, n = $5, and n = 3/2, there are further solutions 
with n E (1,2) which describe flows with a rarefaction wave (solutions of the Vaglio-Laurin type) as 
well as flows with a free stream-line (Figs 1 and 2) which are due to the curvilinear property of the 
generatrix AO. 

1. Let us introduce a Cartesian system of coordinates (x, y), where the negative part of the x-axis 
coincides with the tangent to the generatrix A0 at the point 0, and a system of Mises coordinates 
(x, v) (v is the stream action). The origin of both systems of coordinates is at the point 0. We denote 
by qX and q,, the velocity components along the x and y-axes respectively, p is the density, p is the 
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Fig. 1. Fig. 2. 

pressure and K is the ratio of the specific heat capacities. The thermodynamic variables are related by 
the equation of state of an ideal gas. Below, all the flow parameters and the system of Euler equations 
are assumed to be dimensionless. Their critical values are taken as the characteristic magnitudes. 

The components of the perturbed velocity U, and v,, are equal to U, = qx - 1, I.+ = qx. We denote the 
neighbourhood of the corner point 0, at which 1 II, 1 Q 1 and 1 II,, 1 % 1, by G. In domain G, the system 
of Euler equations in Mises variables can be simplified and, in the first approximation, can be repre- 
sented in the form 

(1.1) 

The problem of the transonic flow past a comer point on a protile with a generatrixA0, which varies 
according to the power law 

y _-~%(-x)‘3’“+ . . . . XSO, ?A>oo; n>1, l3=(l+l+ (1.2) 

will be studied using Eqs (1.1). 
Depending on the global problem of the flow past a profile, either flow with a rarefaction wave or 

flow with a free stream-line may be obtained. 
Karman’s equations (1.1) possess a class of self-similar solutions. For the perturbed velocity poten- 

tial cp and its components, we have [l, 21 

rp=AJ 3”-%(E). g - l3.x / qfl,wx = lQP2f(& VJ - $3”-3s(Q 

The self-similar functionf(Q = da/d5 satisfies the ordinary differential equation [lo] 

(1.3) 

(f4212)$+ 2 

( 1 

2 

+n(3n-5)b$-2(2n-3)(n-I)f=0 

On changing in (1) to the variables 

F=E-2f, W=sdF/& 

we obtain the first-order differential equation [lo] 

dY -6F-5nV+6F2+7FV+V2 
dF= (n2 - F)Y 

U-4) 

(1.5) 

(1.6) 
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For the function g(c) we have 

1 P- 
g 3(n-1) [ 

(f-n2~+&+2n(n-I)Y 1 =&[2F(P-n)+(F-n2~Vl (l-7) 

We shall denote the curves which are determined from the equations 

2F(F-n)+(F-&Y” PO 

-6F-5n\Yp+6F2+7FY,,+$-0 

by V and P, respectively. The vertical component of the velocity changes sign at the intersection of 
curve Ywith the integral curves. The integral curves have a zero slope at points of the curve P. 

The solvability of problems in transonic gas dynamics is often conveniently investigated in the 
hodograph plane. If, in the system of equations (l.l), one changes to a single equation for w and to 
the independent variables u = p-‘u,, 2) = v,,, then, as a result, the Tricomi equation [l, 21 is obtained. 
The latter possesses a class of self-similar solutions which correspond to the solutions (1.3) in the 
physical plane [l] 

The function xi(z) satisfies the hypergeometric equation [7] 

d2X’ (1 7 \&j .(. l\ 
z(1 -z)L 

dz2 
+\~-~Z)~+l\J+~)Xj -0 (1.9) 

2. Let us study the behaviour of the integral curves of Eq. (1.6). They have four singular points 

NO, O), B(O, I), C(n2, -n(n+ l)), D(n2, -6n(n - 1)) in the finite part of the (F, Y)-plane and three singu- 
lar points E, Q and G at infinity [5,11]. The behaviour of the integral curves is conveniently considered 
on a unit PoincarC hemisphere projected onto the (F, Y)-plane (Figs 3 and 4). As a result, each of the 
above-mentioned points at infinity is split into two identical points which lie symmetrically on the 
equator with respect to the centre of the circle. We denote those points at infinity into which the curves 
enter or from which they depart, when Y > 0, by E*, Q* and G* (and, when Y > 0, by E, Q and G). 

Fig. 3. 
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Fig. 4. 

Point A is a node and, in the physical plane, corresponds to w = 0, x f 0. When (3) + 00 in the 
neighbourhood of the x-axis, the asymptotic behaviour of a(e) has the form [l] 

Q(EJ - A&.$-2’” + B&#-3’“+... (2-I) 

In the (F, Y)-plane, the integral curves 

(2F+d I I 
yz 

\n 
-CA2F+Y 

I n 
+ . . . (2.2) 

correspond to them. 
The arbitrary constants Aa and Ba in (2.1) are related to CA in (2.2) and $9 in (1.2) by the relation 

WI 

3(n-1)n B, 
‘A = (3n_2)3’2 wB/Z ‘- Ba 

If& = 0,As # 0 then CA = 0. It follows that u, # 0 and uY = 0. In the physical plane, this corres- 
ponds to the flow past a profile with a rectilinear generatrixy = 0,x < 0. We shall call the integral curve 
(2.2) with C,., = 0 symmetric and denote it by Ki. We shall call the integral curve (2.2) in the case when 
&J#O,Ao=O(C~ = -) antisymmetric and denote it by &. When x > 0, it corresponds to a flow with 
a free streamline in which the velocity is equal to the velocity of sound. 

The singular point B is a saddle point for all values of n > 1. We denote the integral curve, which 
passes through point B with a negative slope and corresponds to flow of the Prandtl-Mayer type, by K3. 

The singular G - G* is a saddle point. It can only be reached along the integral curve [lo] 

w, --SF+ 3n-2)(d) + . . . . IFI-m 

In the physical plane, the point G - G* corresponds to the y-axis on which the velocity of sound is 
attained. Here, the acceleration becomes infinite. 
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The singular point E - E* is a node. In the neighbourhood of this point the behaviour of the integral 
curves can be represented in the form 

Y - -2F+CJF1”2+ 4(n-l)(n-x)+ . ..) IFI+ 00. (2.3) 

If the integral curve f = f(5) of Eq. (1.4) smoothly traverses the 5 = 0 axis when f < 0, then, in 
the neighbourhood of the point 5 = 0, two integral curves of the family (2.3) correspond to it when 
F+--=with&. = aand& = -a, where a is a certain non-zero constant. 

In the physical plane, the point E - E* corresponds to the y-axis. When C,. = 0 and F < 0, we 
denote the curve of the node by ‘PIE*. 

The point Q - Q* is a node and is arrived at by moving along the limiting line JY 1 + 00, F = 
n2Cf = n2k2). 

On passing through the point Q - Q*, the magnitude of 5 reaches an extremum. This means that the 
physical plane doubly overlaps. On approaching the point Q - Q*, the acceleration of the flow tends 
to infinity. 

Points C and D are not used in the investigation and we shall therefore not dwell on them. 
Equation (1.6) admits of solutions in the form of linear functions which help in understanding the 

behaviour of the integral curves as a function of the parameter n and, in fact: Y = -3/2F when IZ = 2 
(curve K2), Y = -2F when IZ = 3/2 (cuwe K2), Y = -3/z.F when 12 = 4/3 (curve ICI), Y = -2F when it = 
l(curveKr)andY=-2F-2whenn=2(curveK3). 

It can also be easily shown that, when F < 0, the inequalities 

-2 < S(F.-2F)cO. rIE(3.2) 

gcF.-2n < -2, nE(1, ;j 

-<qF,Y”)<O, n>l #V 

dF dF 

(2.4) 

hold on the line Y = -2F and the curve V. 
When F < 0, the curve Kl departs from point A, located below curve Y for all values of IZ > 1. It 

follows from the inequalities (2.4) that the curves K1 and Vdo not intersect when F > 0. On the other 
hand, each integral curve of the family (2.2) with CA > 0, which is located between curves Kr and K2 
when F < 0 intersects the curve Vand, moreover, just once. 

It follows from the first equality of (1.5) that intersection of the F = 0 axis by an integral curve 
denotes passage through the velocity of sound in the physical plane. 

3. We will first consider the problem of the transonic flow past a comer point with a free stream- 
line. It is formulated as follows. In the domain G, it is required to tkrd a smooth solution of Karman’s 
equations (1.1) which satisfies a no-flow condition on the generatrix A0 and the condition of the 
constancy of the pressure on the free stream-line OB (Fig. 1). To a first approximation, these condi- 
tions have the form 

Vy+B 3-3’ngs(_p’n, 11, * 0, x 4 0 (3-l) 

v,+o, q-0, x>o (3.2) 

The vertical component of the velocity u,, in the neighbourhood ofA is positive while it is negative 
in the neighbourhood of OB. If the generatrix A0 is rectilinear (u,, = 0 when w = 0 and x < 0), the 
solution of problem (Ll), (3.1), (3.2) is given in the (F, Y)-plane by the functions (Fig. 3) 

yw __5F5(3-2F)+lW%, _-oo< F<O 

36 - 25F 
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The curve Y(-), being the curve Ki, departs from pointA and arrives at the point E*(CEI = -4(6)/5). 
At point E*, it passes into the curve ‘I’(+) which is the curve K2(CE* = -$6)/5). The curve YE* 

(cE* = 0) lies between the curves Ki and &. All of the integral curves of the family (2.2), which are 
located between the curves Kr and YE*, arrive at the point E*. Afterwards, having been extended, they 
return to point A while located between,curves YE* and Kp When n < 6/s, curve 2, having reached the 
point E*, passes into a curve which goes back into A between the curves Kr and Yo+. Hence, it does 
not intersect cmve Y and the sign of the velocity does not change from negative to positive. Now, let 
II > 6/s. In this case, curve K2, on arriving at E* is subsequently continued by a curve which arrives at 
point A and is located between the curves Ki and YE*. It intersects curve V. Such a situation holds until 
the parameter n becomes equal to 3/2. When n = 3/2, curve K2 passes into a straight line Y = -2F and 
coincides with YE.. When n > 3/2, all of the curves which depart from point A between curves Yo. and 
K2 when F < 0 arrive at the point E* and are continued by curves which reach either point Q* or B or 
A. In this case, they necessarily intersect the F = 0 axis, and we cannot satisfy the boundary condition 
(3.2). 

The solvability of problem (1.1) (3.1) (3.2) is most conveniently investigated in the hodograph 
plane. The solution of Eq. (1.9), which satisfies condition (3.1) has the form 

The analytic continuation of the solution (3.3) in the neighbourhood of z = 0 (U < 0, u + -0) has 
the form [12] 

*I - Dip' (1 - z)1’3 

+ 
(3.4) 

If II > 6/s (j < %), the first term on the right-hand side of (3.4) is positive. Passage through the 
2) = 0 axis denotes intersection of curve Vin the (F, Y)-phase plane. 

Let us now establish for which values of n the curve in the (F, Y)-plane, corresponding to the 
solution (3.4), arrives at point A. Let us continue solution (3.4) through the v = 0 axis so that the 
corresponding solution is smooth in the physical plane. This condition will be satisfied if, in the domain 
u < 0,~ > 0 the solution of Eq. (1.9) is taken in the form 

wj = Djpi(l-z)“3 

Analytic continuation of the solution (3.5) in the neighbourhood of z = 1 (U = 0,~ > 0) yields 

~j I Dip' 
2w4)w) F P -+ j,-j;t;l -z\ + 

r(l+j)T(j/2+j)r(~-ji)r(K-j) \6 I 

Lcosx/2j+- (l-z) ‘1 
--fi \ 61 I 

(3.5) 

(3.6) 

When % < it -Z 3/2 (% > j > 1/3), the first term on the right-hand side of (3.6) is less than zero. This 
signifies that the stream function vj vanishes at a certain z*, and this means that, in the (F, Y)-plane, 
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the integral curve arrives at A after intersecting curve V, and that all the requirements imposed on the 
solution of the problem are satisfied. 

Let us now investigate the so~ab~i~ of the problem when II c Ts in the h~ograph plane. If 
5/h-j -_ - k (k = 0, 1, . . . ), the first term in (3.4) disappears, and we obtain the spectrum of the values 

nk -E(k-0, 1, 2,...) 

for which the stream lotion vj = 0 when u < 0,~ = 0. 
The solution when no = % (k = 0) has been found in [5] and, in the phase plane, it is given by the 

functions Y = Y(‘)(F)(F < 0) described above. 
We will show that, for the remaining values of nk, the solutions (1.8), (1.9) cannot be taken as 

solutions of the physical problem we have formulated. 
We will represent Eq. (1.9) in the self-adjoint form [2] 

d dxj - 

dz 
~"2(]-~)2'3~ (3.7) 

The coefficient in front of the second term on the right-hand side of (3.4) when j - 5/h = k is propor- 
tional to IT’{-k-35). If k = 1, it is negative. Consequently, the solution has just a single zero z* E (0, 
1). On the basis of Sturm’s theorem 113) it may be asserted that all solutions (3.3) when k > 1 will have 
zeros. As a result, we obtain that the flow past a comer point with a rectilinear generatrixA0 in the 
class of self-similar functions is described by the unique solution with n = V5. 

We will now consider the case when the generatrixA0 is curvilinear and II < % 0’ > %). It is seen 
from (3.4) that, if 0 < j - % < 1, then, within the interval 0 < z < 1, there is a zero since the first term 
in (3.4) is negative. Let us denote it by z; Then, when 1 < j - S/6 c 2, there is just a single zero of the 
solution (3.4) in the interval (zJ’, 1) according to Sturm’s theorem. Reasoning in a similar manner, we 
arrive at the conclusion that, for allj > %, the solution (3.3) has just a single zero in the interval (0,l). 

Hence, problem (l.l), (3.1), (3.2) has a solution in the class of self-similar functions when 6/5 d n c 3k. 

4. We will now consider the problem of the transonic flow past a point of discontinuity with a 
rarefaction wave. It is required to find a smooth solution of the system of equations (1.1) which 
satisfies the no-flow condition (3.1) on the generatrixA0 and which becomes a solution of the Prandtl- 
Mayer type when w -+ 0, x < 0. The Vaglio-Laurin solution is represented in the (F, Y)-plane by an 
integral curve which departs from point A as curve Ki and reaches E*. From the point E* it is extended 
by a curve of the family (2.3) and arrives at B. When Y4 < n c 4/3 (2/3 > j > Y2), curve Kl arrives at the 
point E* and is then continued by a curve which arrives at Q* having first intersected the F = 0 axis. 
This means that there is a transition through the velocity of sound. One of the curves of the family 
(2.2), which departs from point A between Kl and K2 and is extended through E*, arrives at point B. 
It necessarily intersects curve Vwhich lead to a change in the sign of the velocity component u,, from 
positive to negative. 

When n = 4/3 (j = 42), curve Kj becomes the straight line Y = -%F and arrives at the point G*. 
When B c n tj < %2), curve Kl is located below the curve Yo*. 
When % s n c ?2 (Y2 B j > l/3), one of the curves, which is located between Y,* and Yz., has been 

continued through point E*, it arrives at B. For these values of n, curve K2 lies above the line Y = 
-2F for all F E (- 00~0). 

Ifn = 3/20'= Y) 3 , curve K2 becomes the straight line YE. = -2F. 
When 3k < n < 5/3 (% z- j > Y4) one of the curves located between Yo* and K2, after it has been 

extended through point E*, arrives at B. 
When n becomes equal to ?3, curve Kz is extended at point E* by a curve which arrives at B. In this 

case, all curves departing from point A between Yo. and K2, after their continuation through point E*, 
arrive at Q* (Fig. 4). 

When n < ?4, all integral curves, located between Kl and YE* after being extended through E*, 
return back to point A while being located below cmve K2 They cannot reach point B. 
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Let us consider the hodograph plane. In the neighbourhood of the limiting characteristic, the 
solution (1.9), which vanishes in it, has the form 

-i-YaFIL. + j 
2 7 

Xj ‘z ,?+ j;-+2j;z -I\ 
\6 6 I’ 

Dj >O (3.8) 

The solution (3.8) in the neighbourhood of the limiting characteristic corresponds, in the (F, Y)- 
plane, to the integral curve &. As a result of the analytic continuation of the solution (3.8) through 
the point z = 1 in the neighbourhood of the point z = 0 (U < 0, ‘u = 0) we find 

26 r(3/6 + 2j)sinrr(% + i) F( 1 
r<% + i)W + j) 

-4J;;~(~+2j)co~~(K+j)zl/ZF(l+ j J__ j. 2. z\ 
w + i)r(Y, + i) \ ‘6 ‘2’ I 1 (3.9) 

If 

g+j-k (k=l, 2,...) (3.10) 

then the stream function (3.9) vanishes when 2) = 0. This situation corresponds to the flow past a 
comer point with a rectilinear generatrixA0. We obtain the Vaglio-Laurin solution when k = 1. 

We will show that the remaining values of the spectrum (3.10) do not yield physically meaningful 
solutions. The solution (3.9), subject to condition (3.10), takes the form 

(3.11) 

When k = h, the value of vj (3.11) is less than zero when z + 0,~ < 0. When z = 1, the solution 
(3.8) takes the value 

ulj = Djpj r(mx+2k) , o 

w4+w-a++) 

Consequently, the solution (3.8) vanishes for even k in the interval [0, 11. Since the solution (3.8) 
satisfies Eq. (3.7), Sturm’s theorem can be applied and it follows from this that, when k = 2m + 1 and 
m 2 1, the solution (3.8) also vanishes. 

We will first consider the case when n > 74. Continuation of the solution (3.9) in the neighbourhood 
of the line z = 1 in the domain ‘u > 0 yields 

cos 2 xjF 

+ r(x + v)R- M cosn(~+22j)(l-z)“3 $-$“;~;1-z 
( 

1 .4 

u% + jm + j) )I (3.12) 

The first term in the solution (3.12) is negative when 5/4 < n < 5/3 (l/4 < j < Y3). Consequently, the 
stream function vanishes within the interval 0 < z < 1 (U c 0, u > 0). The value of the root z* enables 
us to find the relation between the constants& and Bb So, the problem has a solution when 5/4 <: II < 

513. 

Let us now consider the case when 6/s < II < ?4 (Y3 < j c %). For these values ofj, the first term on 
the right-hand side of (3.9) is negative. This means that the stream function vj vanishes within the 
interval 0 < z < 1 (u < 0, ‘u < 0). This indicates that the integral curve reaches point A without 
intersecting the line V. The case IZ c 6/5 (j > %) is similar to that considered earlier. 
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Hence, there are two families of self-similar solutions of Karman’s equation. One of them, when 6/s 
< n < 3/2, describes the transonic flow past a comer point on a profile with a free stream-line which is 
formed mainly under the influence of the curvature of the generatrixA0. The other family, when 5/4 < 

n < 5/4, describes such a process with a rarefaction wave. These solutions exist in parallel with solutions 
which can be constructed on the basis of the solutions when n = 7s and II = 74 by the addition of terms 
which take account of the curvature. It is of interest to hnd which of the local solutions described 
above are realized in practice. This is not simple since not only the occurrence of comer points but 
also the boundary conditions affect the choice of solutions. It has been shown [ll] that, under the 
influence of the boundary conditions quite another type of flow past a comer point can be generated 
and realized when n = 2. In answering the above question it is necessary firstly to clarify the role 
played by viscosity and heat conduction in the neighbourhood of the comer point on the profile. 
Although the problem of the uniqueness of Vaglio-Laurin solution was raised a long time ago [9], it, 
supplemented by the question of the uniqueness of the solution when n = 6/5, remains open. In all 
likelihood, the choice of solution depends on the global problem under consideration. The solution 
which is realized in it is due to the pressure gradient which is generated in the neighbourhood of the 
comer point. 

Note. In my paper “Investigation of self-similar solutions describing a flow in mixing layers” (prikl. 
Mat. h4ekh. 50,3,403-414,1986) the sixth line on page 412 after the formulae should read: “Hence, 
for m > 1/2 and a specified value of b > 0, the solution of problem (2)-(5) exists in the class of triply 
continuous differentiable functions and is unique when m 3 1.” 

The error which slipped in is immaterial since, in the range of values m E (Vz, l), problems having 
a physical meaning are unknown. When m E (l/2, l), (as also for all m > Yz), the existence and 
uniqueness of the physical problem corresponding to (2)-(5) is ensured as was noted at the beginning 
of the paper, for example, by the conditions: 0(c) + C < 0, < + -; Q’(q)> 0, < E (-,+m). The 
second condition can also be replaced by the requirement @(c,) + +=,s + +oo. 
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